Updating search results...

Search Resources

274 Results

View
Selected filters:
  • Career and Technical Education
Circuit Construction Kit (DC Only)
Unrestricted Use
CC BY
Rating
0.0 stars

An electronics kit in your computer! Build circuits with resistors, light bulbs, batteries, and switches. Take measurements with the realistic ammeter and voltmeter. View the circuit as a schematic diagram, or switch to a life-like view.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Michael Dubson
Sam Reid
Wendy Adams
Date Added:
06/15/2005
Circuit Construction Kit (DC Only), Virtual Lab
Unrestricted Use
CC BY
Rating
0.0 stars

Build circuits with resistors, light bulbs, batteries, and switches and take measurements with laboratory equipment like the realistic ammeter and voltmeter.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Michael Dubson
Sam Reid
Wendy Adams
Date Added:
07/01/2004
Circuits and Electronics, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

"6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. The 6.002 content was created collaboratively by Profs. Anant Agarwal and Jeffrey H. Lang. The course uses the required textbook Foundations of Analog and Digital Electronic Circuits. Agarwal, Anant, and Jeffrey H. Lang. San Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 9781558607354."

Subject:
Career and Technical Education
Computer Science
Education
Electronic Technology
Engineering
Information Technology
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Agarwal, Anant
Agarwal, Anant (Anant K.)
Date Added:
01/01/2007
Collecting and Mapping Data
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Learn how to collect and import spatial features from the field, use web-based map tools to engage citizens, and incorporate the best available spatial data from public domain sources.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Textbook
Provider:
University of Wisconsin
Author:
Janet Silbernagel
Date Added:
04/27/2021
Continuum Electromechanics, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

First published in 1981 by MIT Press, Continuum Electromechanics, courtesy of MIT Press and used with permission, provides a solid foundation in electromagnetics, particularly conversion of energy between electrical and mechanical forms. Topics include: electrodynamic laws, electromagnetic forces, electromechanical kinematics, charge migration, convection, relaxation, magnetic diffusion and induction interactions, laws and approximations of fluid mechanics, static equilibrium, electromechanical flows, thermal and molecular diffusion, and streaming interactions. The applications covered include transducers, rotating machines, Van de Graaff machines, image processing, induction machines, levitation of liquid metals, shaping of interfaces in plastics and glass processing, orientation of ferrofluid seals, cryogenic fluids, liquid crystal displays, thunderstorm electrification, fusion machines, magnetic pumping of liquid metals, magnetohydrodynamic power generation, inductive and dielectric heating, electrophoretic particle motion, electrokinetic and electrocapillary interactions in biological systems, and electron beams. "

Subject:
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Silva, Manuel L.
Zahn, Markus
Date Added:
01/01/2009
Core Functions Evaluation Rubric For Instructional Designers
Unrestricted Use
CC BY
Rating
0.0 stars

The document is a rubric for evaluating the core functions and skills of instructional designers. It outlines performance levels across different competencies.Summary:The rubric evaluates instructional designers across several core competencies, including building relationships, project management, task management, time management, scope management, listening skills, knowledge of fundamentals, and self-improvement.For each competency, there are 4 levels describing the degree to which expectations are met - Level 4 (Exceeds), Level 3 (Meets), Level 2 (Generally Meets), and Level 1 (Does Not Meet).The rubric aims to provide a standardized framework for assessing the performance of instructional designers in key areas. It enables benchmarking against standards and identification of strengths and development areas. 

Subject:
Business
Career and Technical Education
Education
Material Type:
Reading
Author:
Ruth Chisum
Date Added:
09/29/2023
Cosmology and Astronomy: Firestick Farming
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This 8-minute video lesson looks at Firestick Farming and how the indigenous Australians used fire to change their environment. [Cosmology and Astronomy playlist: Lesson 76 of 85]

Subject:
Agriculture
Anthropology
Career and Technical Education
Social and Behavioral Sciences
Material Type:
Lecture
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Khan, Salman
Date Added:
02/20/2011
Coulomb's Law
Unrestricted Use
CC BY
Rating
0.0 stars

Visualize the electrostatic force that two charges exert on each other. Observe how changing the sign and magnitude of the charges and the distance between them affects the electrostatic force.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Roland Van Kerschaver
Date Added:
09/30/2022
Counter Unmanned Aircraft Systems Technologies and Operations
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Short Description:
Hostile use of Unmanned Aircraft Systems (UAS) technology is on the forefront of DoD defense and offensive planners.Our Counter-UAS (C-UAS) textbook has as its primary mission to educate and train resources who will enter the UAS / C-UAS field and trust it will act as a call to arms for military and DHS planners.

Long Description:
As the quarter-century mark in the 21st Century nears, new aviation-related equipment has come to the forefront, both to help us and to haunt us. (Coutu, 2020) This is particularly the case with unmanned aerial vehicles (UAVs). These vehicles have grown in popularity and accessible to everyone. Of different shapes and sizes, they are widely available for purchase at relatively low prices. They have moved from the backyard recreation status to important tools for the military, intelligence agencies, and corporate organizations. New practical applications such as military equipment and weaponry are announced on a regular basis – globally. (Coutu, 2020) Every country seems to be announcing steps forward in this bludgeoning field.

In our successful 2nd edition of Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets (Nichols, et al., 2019), the authors addressed three factors influencing UAS phenomena. First, unmanned aircraft technology has seen an economic explosion in production, sales, testing, specialized designs, and friendly / hostile usages of deployed UAS / UAVs / Drones. There is a huge global growing market and entrepreneurs know it. Second, hostile use of UAS is on the forefront of DoD defense and offensive planners. They are especially concerned with SWARM behavior. Movies like “Angel has Fallen,” where drones in a SWARM use facial recognition technology to kill USSS agents protecting POTUS, have built the lore of UAS and brought the problem forefront to DHS. Third, UAS technology was exploding. UAS and Counter- UAS developments in navigation, weapons, surveillance, data transfer, fuel cells, stealth, weight distribution, tactics, GPS / GNSS elements, SCADA protections, privacy invasions, terrorist uses, specialized software, and security protocols has exploded. (Nichols, et al., 2019) Our team has followed / tracked joint ventures between military and corporate entities and specialized labs to build UAS countermeasures.

As authors, we felt compelled to address at least the edge of some of the new C-UAS developments. It was clear that we would be lucky if we could cover a few of – the more interesting and priority technology updates – all in the UNCLASSIFIED and OPEN sphere.

Counter Unmanned Aircraft Systems: Technologies and Operations is the companion textbook to our 2nd edition. The civilian market is interesting and entrepreneurial, but the military and intelligence markets are of concern because the US does NOT lead the pack in C-UAS technologies. China does. China continues to execute its UAS proliferation along the New Silk Road Sea / Land routes (NSRL). It has maintained a 7% growth in military spending each year to support its buildup. (Nichols, et al., 2019) [Chapter 21]. They continue to innovate and have recently improved a solution for UAS flight endurance issues with the development of advanced hydrogen fuel cell. (Nichols, et al., 2019) Reed and Trubetskoy presented a terrifying map of countries in the Middle East with armed drones and their manufacturing origin. Guess who? China. (A.B. Tabriski & Justin, 2018, December)

Our C-UAS textbook has as its primary mission to educate and train resources who will enter the UAS / C-UAS field and trust it will act as a call to arms for military and DHS planners.

Word Count: 106442

ISBN: 978-1-944548-27-8

(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)

Subject:
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Textbook
Provider:
Kansas State University
Author:
Candice Carter
H.C. Mumm
J.J.C.H. Ryan
J.P. Hood
R. K. Nichols
W.D. Lonstein
Date Added:
03/09/2020
Crop Genetics
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Short Description:
This book provides an introduction to the genetic concepts of reproductive systems, recombination, mutation, segregation and linkage analysis, inbreeding, quantitative inheritance, fertility regulation, population genetics and polyploidy.

Long Description:
This book provides an introduction to the genetic concepts of reproductive systems, recombination, mutation, segregation and linkage analysis, inbreeding, quantitative inheritance, fertility regulation, population genetics and polyploidy.

Word Count: 61452

(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)

Subject:
Agriculture
Career and Technical Education
Genetics
Life Science
Material Type:
Textbook
Provider:
Iowa State University
Author:
Arden Campbell
Deborah Muenchrath
Jode Edwards
Kendall Lamkey
Laura Merrick
Shui-Zhang Fei
Thomas Lübberstedt
William Beavis
Walter Suza
Date Added:
03/10/2023
Cultural History of Technology, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The subject of this course is the historical process by which the meaning of "technology" has been constructed. Although the word itself is traceable to the ancient Greek root teckhne (meaning art), it did not enter the English language until the 17th century, and did not acquire its current meaning until after World War I. The aim of the course, then, is to explore various sectors of industrializing 19th and 20th century Western society and culture with a view to explaining and assessing the emergence of technology as a pivotal word (and concept) in contemporary (especially Anglo-American) thought and expression.

Subject:
Career and Technical Education
Engineering
Language, Philosophy, and Culture
Manufacturing
World Cultures
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Marx, Leo
Williams, Rosalind
Date Added:
01/01/2005
D-Lab II: Design, Spring 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

D-Lab: Design addresses problems faced by undeserved communities with a focus on design, experimentation, and prototyping processes. Particular attention is placed on constraints faced when designing for developing countries. Multidisciplinary teams work on semester-long projects in collaboration with community partners, field practitioners, and experts in relevant fields. Topics covered include design for affordability, design for manufacture, sustainability, and strategies for working effectively with community partners and customers. Students may continue projects begun in SP.721/11.025J/11.472 D-Lab Development.

Subject:
Career and Technical Education
Manufacturing
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Amy J. Smith
Victor Grau Serrat
Date Added:
01/01/2010
Delay Insentitive Circuits -- Structures, Semantics, and Strategies
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The design of concurrent distributed hardware systems is a major challenge for engineers today and is bound to escalate in the future, but engineering education continues to emphasize traditional tools of logic design that are just not up to the job. For engineers tackling realistic projects, improvised attempts at synchronization across multiple clock domains have long been a fact of life. Prone to hazards and metastability, these ad hoc interfaces could well be the least trustworthy aspects of a system, and typically also the least able to benefit from any readily familiar textbook techniques of analysis or verification.

Progress in the long run depends on a change of tactics. Instead of the customary but inevitably losing battle to describe complex systems in terms of their stepwise time evolution, taking their causal relationships and handshaking protocols as a starting point cuts to the chase by putting the emphasis where it belongs. This way of thinking may call for setting aside a hard earned legacy of practice and experience, but it leads ultimately to a more robust and scalable methodology.

Delay insensitive circuits rely on local coordination and control from the ground up. The most remarkable consequence of adhering to this course is that circuits can get useful things done without any clock distribution network whatsoever. Because a handshake acknowledgment concludes each interaction among primitive components and higher level subsystems alike, a clock pulse to mark them would be superfluous. This effect can bring a welcome relief to projects whose timing infrastructure would otherwise tend to create more problems than it solves.

The theory of delay insensitive circuits is not new but has not yet attracted much attention outside of its research community. At best ignored and at worst discouraged in standard curricula, this topic until now has been accessible only by navigating a sea of conference papers and journal articles, some of them paywalled. Popular misconceptions and differing conventions about terminology and notation have posed further barriers to entry. To address this need, this book presents a unified account of delay insensitive circuits from first principles to cutting edge concepts, subject only to an undergraduate-level understanding of discrete math. In an approachable tutorial format with numerous illustrations, exercises, and over three hundred references, it guides an engineering professional or advanced student towards proficiency in this extensive field.

Subject:
Career and Technical Education
Computer Science
Electronic Technology
Engineering
Information Technology
Material Type:
Textbook
Author:
Dennis Furey
Date Added:
08/13/2020
The Delft Sand, Clay & Rock Cutting Model
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In dredging, trenching, (deep sea) mining, drilling, tunnel boring and many other applications, sand, clay or rock has to be excavated. This book gives an overview of cutting theories. It starts with a generic model, which is valid for all types of soil (sand, clay and rock) after which the specifics of dry sand, water saturated sand, clay, atmospheric rock and hyperbaric rock are covered. For each soil type small blade angles and large blade angles, resulting in a wedge in front of the blade, are discussed. For each case considered, the equations/model for the cutting forces, power and specific energy are given. The models are verified with laboratory research, mainly at the Delft University of Technology, but also with data from literature.

Subject:
Career and Technical Education
Engineering
Maritime Science
Material Type:
Textbook
Author:
Sape A. Miedema
Date Added:
08/13/2020
Design Principles for Ocean Vehicles (13.42), Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course covers the basic techniques for evaluating the maximum forces and loads over the life of a marine structure or vehicle, so as to be able to design its basic configuration. Loads and motions of small and large structures and their short-term and long-term statistics are studied in detail and many applications are presented in class and studied in homework and laboratory sessions. Issues related to seakeeping of ships are studied in detail. The basic equations and issues of maneuvering are introduced at the end of the course. Three laboratory sessions demonstrate the phenomena studied and provide experience with experimental methods and data processing.

Subject:
Career and Technical Education
Maritime Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Techet, Alexandra
Date Added:
01/01/2005
Design and Fabrication of Microelectromechanical Devices, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to microelectromechanical devices (MEMS). Material properties, microfabrication technologies, structural behavior, piezoresistive and capacitive sensing, electrostatic actuation, fluid damping, noise, amplifiers, and feedback systems. Student teams design microsystems (sensors, electronics, and feedback) to meet a set of specifications (sensitivity, frequency response, linearity) using a realistic microfabrication process. Emphasis on modeling and simulation in the design process.

Subject:
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Livermore, Carol
Voldman, Joel
Date Added:
01/01/2007
Design and Manufacturing II, Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Integration of design, engineering, and management disciplines and practices for analysis and design of manufacturing enterprises. Emphasis is on the physics and stochastic nature of manufacturing processes and systems, and their effects on quality, rate, cost, and flexibility. Topics include process physics and control, design for manufacturing, and manufacturing systems. Group project requires design and fabrication of parts using mass-production and assembly methods to produce a product in quantity. This course introduces you to modern manufacturing with four areas of emphasis: manufacturing processes, equipment/control, systems, and design for manufacturing. The course exposes you to integration of engineering and management disciplines for determining manufacturing rate, cost, quality and flexibility. Topics include process physics, equipment design and automation/control, quality, design for manufacturing, industrial management, and systems design and operation. Labs are integral parts of the course, and expose you to various manufacturing disciplines and practices.

Subject:
Career and Technical Education
Manufacturing
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Kim, Sang-Gook
Date Added:
01/01/2004
Design and Manufacturing I, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" Welcome to 2.007! This course is a first subject in engineering design. With your help, this course will be a great learning experience exposing you to interesting material, challenging you to think deeply, and providing skills useful in professional practice. A major element of the course is design of a robot to participate in a challenge that changes from year to year. This year, the theme is cleaning up the planet as inspired by the movie Wall-E."

Subject:
Career and Technical Education
Manufacturing
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Frey, Daniel
Gossard, David
Date Added:
01/01/2009
Designing Paths to Peace, Fall 2002
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Teaches creative design based on the scientific method through the design, engineering, and manufacture of a detailed inlaid tile. This is an introductory lecture/studio course designed to teach students the basic principles of design and expose them to the design process. Throughout the course, students will be introduced to the terminology and concepts that underlie all forms of visual art; which-in many ways-forms the basis for the design of all physical objects. Along with learning mechanical skills, thinking both critically and visually, and working with different media, the students will consider how the arts grow out of and respond to particular cultural contexts and ideas; and how these thinking patterns can be applied to virtually all types of design. Presentations, lectures, demonstrations, discussions and various artistic works will be used to show students how other artists and designers have dealt with the same issues they will be facing in lab. Each class will begin with a critique of the students' homework, followed by a discussion (and presentation when appropriate) of the pertinent issues of that week. All aspects of the course will aid the teams of students in designing and building a major inlaid tile whose elements are designed as digital solid models and manufactured on an abrasive waterjet machining center. The course will conclude with an exhibit of the completed tiles open to the MIT and the Greater-Boston public.

Subject:
Career and Technical Education
Creative and Applied Arts
Manufacturing
Visual Arts
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Slocum, Alexander H.
Date Added:
01/01/2002
Design of Dredging Equipment
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Dredging equipment, mechanical dredgers, hydraulic dredgers, boundary conditions, design criteria, instrumentation and automation.

Subject:
Career and Technical Education
Engineering
Maritime Science
Material Type:
Activity/Lab
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
S.A. Miedema
Date Added:
08/13/2020