Updating search results...

Search Resources

88 Results

View
Selected filters:
  • Electronic Technology
Adaptive Antennas and Phased Arrays, Spring 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

"The 16 lectures in this course cover the topics of adaptive antennas and phased arrays. Both theory and experiments are covered in the lectures. Part one (lectures 1 to 7) covers adaptive antennas. Part two (lectures 8 to 16) covers phased arrays. Parts one and two can be studied independently (in either order). The intended audience for this course is primarily practicing engineers and students in electrical engineering. This course is presented by Dr. Alan J. Fenn, senior staff member at MIT Lincoln Laboratory. Online Publication"

Subject:
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Fenn, Alan J.
Date Added:
11/20/2012
Advanced Device Physics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course will focus for a large part on MOSFET and CMOS, but also on heterojunction BJT, and photonic devices.First non-ideal characteristics of MOSFETs will be discussed, like channel-length modulation and short-channel effects. We will also pay attention to threshold voltage modification by varying the dopant concentration. Further, MOS scaling will be discussed. A combination of an n-channel and p-channel MOSFET is used for CMOS devices that form the basis for current digital technology. The operation of a CMOS inverter will be explained. We will explain in more detail how the transfer characteristics relate to the CMOS design.

Subject:
Career and Technical Education
Electronic Technology
Physical Science
Physics
Material Type:
Activity/Lab
Lecture Notes
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
R.A.C.M.M. van Swaaij
Date Added:
02/20/2016
Analog Integrated Circuit Design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

An introductory course in analog circuit synthesis for microelectronic designers. Topics include: Review of analog design basics; linear and non-linear analog building blocks: harmonic oscillators, (static and dynamic) translinear circuits, wideband amplifiers, filters; physical layout for robust analog circuits; design of voltage sources ranging from simple voltage dividers to high-performance bandgaps, and current source implementations from a single resistor to high-quality references based on negative-feedback structures.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Assessment
Full Course
Lecture Notes
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Date Added:
02/19/2016
Applied Industrial Electricity: Theory and Application
Read the Fine Print
Educational Use
Rating
0.0 stars

This free electrical engineering/technology textbook provides a series of chapters covering electricity and electronics. The information provided is great for students, makers, and professionals who are looking for an application-centric coverage of this field.

Subject:
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Textbook
Provider:
Iowa State University
Author:
John Haughery
Tony R Kuphaldt
Date Added:
06/03/2021
Basic Electronics 1
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Video and study guides for the following topics: Order of operations, algebraic manipulation, negative and fractional exponents, rounding, engineering notation, unit conversion, general industrial safety, energy, power, efficiency, capacity factor, basic electrical properties: voltage, current, resistance, fixed resistors, variable resistors, protoboards, ohmmeters, series resistors, parallel resistors, 4 band resistor color code, DC Ohm’s Law, DC power, voltmeters, ammeters, series DC circuit properties, DC Kirchhoff’s Voltage Law, DC voltage divider rule, parallel DC circuit properties, DC Kirchhoff’s Current Law, DC current divider rule, series-parallel DC circuit properties, instrument loading effects, DC current sources, source conversion, resistive delta-Y conversion, complex DC circuits, DC Superposition Theorem, DC Thevenin’s Theorem, DC Maximum Power Transfer Theorem, DC Norton’s Theorem

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Textbook
Provider:
OpenOregon
Author:
Jim Pytel
Date Added:
08/13/2020
Basic Lighting for Electricians: Level 1
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This text was written for the early term electrical apprentice or anyone who is interested in the field of lighting and lighting design. It is not intended as a replacement for proper electrical training and only qualified individuals should make any changes to electrical circuits.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Textbook
Provider:
British Columbia/Yukon Open Authoring Platform
Author:
Aaron Lee
Date Added:
05/05/2021
Basic Motor Control
Unrestricted Use
CC BY
Rating
0.0 stars

This readily accessible online resource was developed for anyone who has interest in, or works with, AC motors and their associated motor control equipment. Whether you are an electrical apprentice learning about the subject in school or a seasoned journeyperson installing equipment in the field, you will find it easy to navigate through the descriptive text, original diagrams, and explanatory videos to find the exact information you are looking for.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Textbook
Provider:
British Columbia/Yukon Open Authoring Platform
Author:
Aaron Lee
Chad Flinn
Date Added:
08/20/2020
Biological Engineering II: Instrumentation and Measurement, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers sensing and measurement for quantitative molecular/cell/tissue analysis, in terms of genetic, biochemical, and biophysical properties. Methods include light and fluorescence microscopies; electro-mechanical probes such as atomic force microscopy, laser and magnetic traps, and MEMS devices; and the application of statistics, probability and noise analysis to experimental data.

Subject:
Biology
Career and Technical Education
Electronic Technology
Life Science
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
So, Peter
Date Added:
01/01/2006
Build a Small Radar System Capable of Sensing Range, Doppler, and Synthetic Aperture Radar Imaging, January IAP 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Are you interested in building and testing your own imaging radar system? MIT Lincoln Laboratory offers this 3-week course in the design, fabrication, and test of a laptop-based radar sensor capable of measuring Doppler, range, and forming synthetic aperture radar (SAR) images. You do not have to be a radar engineer but it helps if you are interested in any of the following; electronics, amateur radio, physics, or electromagnetics. It is recommended that you have some familiarity with MATLAB;. Teams of three students will receive a radar kit and will attend a total of 5 sessions spanning topics from the fundamentals of radar to SAR imaging. Experiments will be performed each week as the radar kit is implemented. You will bring your radar kit into the field and perform additional experiments such as measuring the speed of passing cars or plotting the range of moving targets. A final SAR imaging contest will test your ability to form a SAR image of a target scene of your choice from around campus; the most detailed and most creative image wins.

Subject:
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Charvat, Gregory L.
Fenn, Alan J.
Herd, Jeffrey S.
Kogon, Steve
Williams, Jonathan H.
Date Added:
01/01/2010
Circuit Construction Kit (AC+DC)
Unrestricted Use
CC BY
Rating
0.0 stars

This new version of the CCK adds capacitors, inductors and AC voltage sources to your toolbox! Now you can graph the current and voltage as a function of time.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Michael Dubson
Sam Reid
Date Added:
07/12/2008
Circuit Construction Kit (AC+DC), Virtual Lab
Unrestricted Use
CC BY
Rating
0.0 stars

Build circuits with capacitors, inductors, resistors and AC or DC voltage sources, and inspect them using lab instruments such as voltmeters and ammeters.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Michael Dubson
Sam Reid
Date Added:
07/01/2006
Circuit Construction Kit (DC Only)
Unrestricted Use
CC BY
Rating
0.0 stars

An electronics kit in your computer! Build circuits with resistors, light bulbs, batteries, and switches. Take measurements with the realistic ammeter and voltmeter. View the circuit as a schematic diagram, or switch to a life-like view.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Michael Dubson
Sam Reid
Wendy Adams
Date Added:
06/15/2005
Circuit Construction Kit (DC Only), Virtual Lab
Unrestricted Use
CC BY
Rating
0.0 stars

Build circuits with resistors, light bulbs, batteries, and switches and take measurements with laboratory equipment like the realistic ammeter and voltmeter.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Michael Dubson
Sam Reid
Wendy Adams
Date Added:
07/01/2004
Circuits and Electronics, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

"6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. The 6.002 content was created collaboratively by Profs. Anant Agarwal and Jeffrey H. Lang. The course uses the required textbook Foundations of Analog and Digital Electronic Circuits. Agarwal, Anant, and Jeffrey H. Lang. San Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 9781558607354."

Subject:
Career and Technical Education
Computer Science
Education
Electronic Technology
Engineering
Information Technology
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Agarwal, Anant
Agarwal, Anant (Anant K.)
Date Added:
01/01/2007
Collecting and Mapping Data
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Learn how to collect and import spatial features from the field, use web-based map tools to engage citizens, and incorporate the best available spatial data from public domain sources.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Textbook
Provider:
University of Wisconsin
Author:
Janet Silbernagel
Date Added:
04/27/2021
Continuum Electromechanics, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

First published in 1981 by MIT Press, Continuum Electromechanics, courtesy of MIT Press and used with permission, provides a solid foundation in electromagnetics, particularly conversion of energy between electrical and mechanical forms. Topics include: electrodynamic laws, electromagnetic forces, electromechanical kinematics, charge migration, convection, relaxation, magnetic diffusion and induction interactions, laws and approximations of fluid mechanics, static equilibrium, electromechanical flows, thermal and molecular diffusion, and streaming interactions. The applications covered include transducers, rotating machines, Van de Graaff machines, image processing, induction machines, levitation of liquid metals, shaping of interfaces in plastics and glass processing, orientation of ferrofluid seals, cryogenic fluids, liquid crystal displays, thunderstorm electrification, fusion machines, magnetic pumping of liquid metals, magnetohydrodynamic power generation, inductive and dielectric heating, electrophoretic particle motion, electrokinetic and electrocapillary interactions in biological systems, and electron beams. "

Subject:
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Silva, Manuel L.
Zahn, Markus
Date Added:
01/01/2009
Coulomb's Law
Unrestricted Use
CC BY
Rating
0.0 stars

Visualize the electrostatic force that two charges exert on each other. Observe how changing the sign and magnitude of the charges and the distance between them affects the electrostatic force.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Roland Van Kerschaver
Date Added:
09/30/2022
Counter Unmanned Aircraft Systems Technologies and Operations
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Hostile use of Unmanned Aircraft Systems (UAS) technology is on the forefront of DoD defense and offensive planners.Our Counter-UAS (C-UAS) textbook has as its primary mission to educate and train resources who will enter the UAS / C-UAS field and trust it will act as a call to arms for military and DHS planners.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Textbook
Provider:
New Prairie Press
Author:
Candice Carter
H.C. Mumm
J.J.C.H. Ryan
J.P. Hood
R. K. Nichols
W.D. Lonstein
Date Added:
03/09/2020
Delay Insentitive Circuits -- Structures, Semantics, and Strategies
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The design of concurrent distributed hardware systems is a major challenge for engineers today and is bound to escalate in the future, but engineering education continues to emphasize traditional tools of logic design that are just not up to the job. For engineers tackling realistic projects, improvised attempts at synchronization across multiple clock domains have long been a fact of life. Prone to hazards and metastability, these ad hoc interfaces could well be the least trustworthy aspects of a system, and typically also the least able to benefit from any readily familiar textbook techniques of analysis or verification.

Progress in the long run depends on a change of tactics. Instead of the customary but inevitably losing battle to describe complex systems in terms of their stepwise time evolution, taking their causal relationships and handshaking protocols as a starting point cuts to the chase by putting the emphasis where it belongs. This way of thinking may call for setting aside a hard earned legacy of practice and experience, but it leads ultimately to a more robust and scalable methodology.

Delay insensitive circuits rely on local coordination and control from the ground up. The most remarkable consequence of adhering to this course is that circuits can get useful things done without any clock distribution network whatsoever. Because a handshake acknowledgment concludes each interaction among primitive components and higher level subsystems alike, a clock pulse to mark them would be superfluous. This effect can bring a welcome relief to projects whose timing infrastructure would otherwise tend to create more problems than it solves.

The theory of delay insensitive circuits is not new but has not yet attracted much attention outside of its research community. At best ignored and at worst discouraged in standard curricula, this topic until now has been accessible only by navigating a sea of conference papers and journal articles, some of them paywalled. Popular misconceptions and differing conventions about terminology and notation have posed further barriers to entry. To address this need, this book presents a unified account of delay insensitive circuits from first principles to cutting edge concepts, subject only to an undergraduate-level understanding of discrete math. In an approachable tutorial format with numerous illustrations, exercises, and over three hundred references, it guides an engineering professional or advanced student towards proficiency in this extensive field.

Subject:
Career and Technical Education
Computer Science
Electronic Technology
Engineering
Information Technology
Material Type:
Textbook
Author:
Dennis Furey
Date Added:
08/13/2020