Updating search results...

Search Resources

601 Results

View
Selected filters:
  • Engineering
3rd graders build robots at Santa Rita Elementary School
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Mrs. Rowhani's third graders learn about matter and energy by building a Spout bot with Khan Academy. Special thanks to: Santa Rita's volunteer parents, Kami Thordarson, Karen Wilson and of course Laleh Rowhani the class teacher. Created by Karl Wendt.

Subject:
Engineering
Life Science
Physical Science
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Karl Wendt
Date Added:
02/18/2013
5 volt power distribution board
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this video we hack apart a bread board to create a 5 volt power distribution strip. The 5 volts comes from the center pin in the motor controller and the negative or ground comes from the ground pin on the motor controller. Created by Karl Wendt.

Subject:
Engineering
Life Science
Physical Science
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Karl Wendt
Date Added:
10/08/2012
6th graders learn to build a Spider robot
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Vicki Lombardi's 6th grade students at Santa Rita Elementary in Los Altos School district learn how to build a Spider robot. Read more at: http://lasdilearn.blogspot.com/2013/02/third-graders-building-robots-mission.html. Created by Karl Wendt.

Subject:
Engineering
Life Science
Physical Science
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Karl Wendt
Date Added:
03/28/2013
AC Circuits
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This eBook was written as the sequel to the eBook titled DC Circuits, which was written in 2016 by Chad Davis.
This eBook covers Alternating Current (AC) circuit theory as well us a brief introduction of electronics. It is
broken up into seven modules. Module 1 covers the basic theory of AC signals. Since only DC sources are used in
the first eBook, details of AC signals such as sinusoidal waveforms (or sine waves), square waves, and triangle
waves are provided. Module 2, titled AC Circuits Math Background, covers the mathematics background needed
for solving AC circuit problems. The background material in Modules 1 and 2 are combined in Module 3 to solve
circuits with AC sources that include resistors, inductors, and capacitors (RLC circuits).

Subject:
Engineering
Material Type:
Textbook
Provider:
SHAREOK
Date Added:
01/07/2017
AC analysis intro 1
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Solving circuits with differential equations is hard. If we limit ourselves to sinusoidal input signals, a whole new method of AC analysis emerges. Created by Willy McAllister.

Subject:
Engineering
Life Science
Physical Science
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Willy McMaster
Date Added:
07/31/2016
AC analysis superposition
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

We break a sinusoidal input voltage into two complex exponentials. Using superposition, we can recover the complex output signals and reassemble them into a real sinusoidal output voltage. Created by Willy McAllister.

Subject:
Engineering
Life Science
Physical Science
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Willy McMaster
Date Added:
08/03/2016
AI skills for engineers: Data creation and collection
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A one-stop shop to get started on the key considerations about data for AI! Learn how crowdsourcing offers a viable means to leverage human intelligence at scale for data creation, enrichment and interpretation, demonstrating a great potential to improve both the performance of AI systems and their trustworthiness and increase the adoption of AI in general.

Subject:
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Date Added:
05/23/2024
Acoustic Remote Sensing and Sea Floor Mapping
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course treats the following topics: - Relevant physical oceanography - Elements of marine geology (seafloor topography, acoustical properties of sediments and rocks) - Underwater sound propagation (ray acoustics, ocean noise) - Interaction of sound with the seafloor (reflection, scattering) - Principles of sonar (beamforming) - Underwater acoustic mapping systems (single beam echo sounding, multi-beam echo sounding, sidescan sonar) - Data analysis (refraction corrections, digital terrain modelling) - Applications (hydrographic survey planning and navigation, coastal engineering) - Current and future developments.

Subject:
Engineering
Oceanography
Physical Science
Material Type:
Homework/Assignment
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
dr.ir. M. Snellen
Date Added:
02/09/2016
Adaptive Antennas and Phased Arrays, Spring 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

"The 16 lectures in this course cover the topics of adaptive antennas and phased arrays. Both theory and experiments are covered in the lectures. Part one (lectures 1 to 7) covers adaptive antennas. Part two (lectures 8 to 16) covers phased arrays. Parts one and two can be studied independently (in either order). The intended audience for this course is primarily practicing engineers and students in electrical engineering. This course is presented by Dr. Alan J. Fenn, senior staff member at MIT Lincoln Laboratory. Online Publication"

Subject:
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Fenn, Alan J.
Date Added:
11/20/2012
Advanced Analytic Methods in Science and Engineering, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A comprehensive treatment of the advanced methods of applied mathematics. Designed to strengthen the mathematical abilities of graduate students and train them to think on their own. Review of elementary methods in complex analysis, ordinary differential equations, and partial differential equations. Expansions around regular and irregular singular points; asymptotic evaluation of integrals, regular perturbations; WKB method; multiple scale method; boundary-layer techniques.

Subject:
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Cheng, Hung
Date Added:
01/01/2004
Advanced Design and Optimization of Composite Structures I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces the basic components of an airframe structure and discusses their use and limitations. The realities of composite design such as the effect of material scatter, environmental knockdowns, and damage knockdowns are discussed and guidelines accounting for these effects and leading to robust designs are presented.

The resulting design constraints and predictive tools are applied to real-life design problems in composite structures. A brief revision of lamination theory and failure criteria leads into the development of analytical solutions for typical failure modes for monolithic skins (layup strength, buckling under combined loads and for a variety of boundary conditions) and stiffeners (strength, column buckling under a variety of loads and boundary conditions, local buckling or crippling for one-edge and no-edge-free conditions). These are then combined into stiffened composite structures where additional failure modes such as skin-stiffener separation are considered. Analogous treatment of sandwich skins examines buckling, wrinkling, crimping, intra-cellular buckling failure modes. Once the basic analysis and design techniques have been presented, typical designs (e.g. flange layup, stiffness, taper requirements) are presented and a series of design guidelines (stiffness mismatch minimization, symmetric and balanced layups, 10% rule, etc.) addressing layup and geometry are discussed. On the metal side, the corresponding design practices and analysis methods are presented for the more important failure modes (buckling, crippling) and comparisons to composite designs are made. A design problem is given in the end as an application of the material in this Part of the course.

Subject:
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr. Christos Kassapoglou
Dr.ir. Mostafa Abdalla
Date Added:
08/13/2020
Advanced Fluid Dynamics of the Environment, Fall 2002
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Theoretical topics of fluid dynamics relevant to natural phenomena or man-made hazards in water and atmosphere. Basic law of fluid motion. Scaling and approximations. Slow flows, with applications to drag on a particle and mud flow on a slope. Boundary layers: jets and plumes in pure fluids or in porous media. Thermal and buoyancy effects, selective withdrawal and internal waves. Transient boundary layers in impulsive flows or waves. Induced streaming and mass transport. Dispersion in steady flows or in waves. Effects of earth rotation on coastal flows. Wind induced flow in shallow seas. Stratified seas and coastal upwelling.

Subject:
Engineering
Environmental Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Mei, Chiang C.
Date Added:
01/01/2002
Advanced Fluid Mechanics, Fall 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is a survey of principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua; Navier-Stokes equation for viscous flows; similarity and dimensional analysis; lubrication theory; boundary layers and separation; circulation and vorticity theorems; potential flow; introduction to turbulence; lift and drag; surface tension and surface tension driven flows.

Subject:
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
McKinley, Gareth
Date Added:
01/01/2013
Advanced Geotechnical Engineering, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Site characterization and geotechnical aspects of the design and construction of foundation systems. Topics include site investigation (with emphasis on in situ testing), shallow (footings and raftings) and deep (piles and caissons) foundations, excavation support systems, groundwater control, slope stability, soil improvement (compaction, soil reinforcement, etc.), and construction monitoring.

Subject:
Engineering
Environmental Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Whittle, Andrew J.
Date Added:
01/01/2003
Advanced Soil Mechanics, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analyses; and laboratory and field methods for evaluation of soil properties in design practice.

Subject:
Engineering
Environmental Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Jen, Lucy
Date Added:
01/01/2004
Advanced Structural Analysis
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is designed to introduce students who wish to specialize in stress analysis of thin-walled structures to more advanced topics such as the analysis of statically indeterminate structures, warping, constraint stresses, shear diffusion, and elements of plate bending.

Subject:
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr. Mostafa Abdalla
Date Added:
02/07/2014
Advanced Structural Dynamics and Acoustics (13.811), Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Foundations of 3D elasticity. Fluid and elastic wave equations. Elastic and plastic waves in rods and beams. Waves in plates. Interaction with an acoustic fluid. Dynamics and acoustics of cylindrical shells. Radiation and scattering by submerged plates and shells. Interaction between structural elements. Response of plates and shells to high-intensity loads. Dynamic plasticity and fracture. Damage of structure subjected to implosive and impact loads.

Subject:
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Schmidt, Henrik
Date Added:
01/01/2004
Advanced Transport Phenomena
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

How can you reduce the energy loss of your home? What is the underlying science of energy loss in pipes? Which heat and mass transfer problems do we have to tackle to make consumer products?

In this engineering course, you will learn about the engineering principles that play an important role in all of these and more phenomena. You will learn about microbalances, radiation, convection, diffusion and more and their applications in everyday life.

This advanced course is for engineers who want to refresh their knowledge, engineering students who are eager to learn more about heat/mass transport and for all who have fun in explaining the science of phenomena in nature.

Subject:
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Peter Hamersma
Robbert Mudde
Date Added:
08/13/2020