Updating search results...

Energy Sector

27 affiliated resources

Search Resources

View
Selected filters:
Architectural Design, Level II: Material and Tectonic Transformations: The Herreshoff Museum, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This semester students are asked to transform the Hereshoff Museum in Bristol, Rhode Island, through processes of erasure and addition. Hereshoff Manufacturing was recognized as one of the premier builders of America's Cup racing boats between 1890's and 1930's. The studio however, is about more then the program. It is about land, water, and wind and the search for expressing materially and tectonically the relationships between these principle conditions. That is, where the land is primarily about stasis (docking, anchoring and referencing our locus), water's fluidity holds the latent promise of movement and freedom. Movement is activated by wind, allowing for negotiating the relationship between water and land.

Subject:
Architecture and Design
Career and Technical Education
Creative and Applied Arts
Manufacturing
Visual Arts
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Lukez, Paul
Date Added:
01/01/2003
Basic Electronics 1
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Video and study guides for the following topics: Order of operations, algebraic manipulation, negative and fractional exponents, rounding, engineering notation, unit conversion, general industrial safety, energy, power, efficiency, capacity factor, basic electrical properties: voltage, current, resistance, fixed resistors, variable resistors, protoboards, ohmmeters, series resistors, parallel resistors, 4 band resistor color code, DC Ohm’s Law, DC power, voltmeters, ammeters, series DC circuit properties, DC Kirchhoff’s Voltage Law, DC voltage divider rule, parallel DC circuit properties, DC Kirchhoff’s Current Law, DC current divider rule, series-parallel DC circuit properties, instrument loading effects, DC current sources, source conversion, resistive delta-Y conversion, complex DC circuits, DC Superposition Theorem, DC Thevenin’s Theorem, DC Maximum Power Transfer Theorem, DC Norton’s Theorem

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Textbook
Provider:
OpenOregon
Author:
Jim Pytel
Date Added:
08/13/2020
CLIMATE-SMART AGRICULTURE Sourcebook
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

The drafting of this Sourcebook on Climate-Smart Agriculture, Forestry and Fisheries has been a collaborative
effort involving professionals from within several departments of FAO and a variety of partner organizations.
Many individuals played a leading role as main authors and coordinators in the preparation of the modules,
while others made written contributions to the Modules’ boxes and case studies.
The conceptualization and production of this sourcebook was coordinated by Lucia Palombi and Reuben Sessa,
under the overall supervision of the Director of the Climate, Energy and Tenure Division of FAO Xiangjun Yao and
the Senior Natural Resources Officer Tiina Vähänen. Editorial support was provided by Denise Martínez Breto,
Kaisa Karttunen, Gordon Ramsay and Alessandra Bresnan while the graphic design was elaborated by Maria
Guardia and Fabrizio Puzzilli.

Subject:
Agriculture
Career and Technical Education
Material Type:
Primary Source
Textbook
Author:
e Food and Agriculture Organization of the United Nations (FAO)
Date Added:
07/19/2021
Circuits and Electronics, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

"6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. The 6.002 content was created collaboratively by Profs. Anant Agarwal and Jeffrey H. Lang. The course uses the required textbook Foundations of Analog and Digital Electronic Circuits. Agarwal, Anant, and Jeffrey H. Lang. San Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 9781558607354."

Subject:
Career and Technical Education
Computer Science
Education
Electronic Technology
Engineering
Information Technology
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Agarwal, Anant
Agarwal, Anant (Anant K.)
Date Added:
01/01/2007
Continuum Electromechanics, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

First published in 1981 by MIT Press, Continuum Electromechanics, courtesy of MIT Press and used with permission, provides a solid foundation in electromagnetics, particularly conversion of energy between electrical and mechanical forms. Topics include: electrodynamic laws, electromagnetic forces, electromechanical kinematics, charge migration, convection, relaxation, magnetic diffusion and induction interactions, laws and approximations of fluid mechanics, static equilibrium, electromechanical flows, thermal and molecular diffusion, and streaming interactions. The applications covered include transducers, rotating machines, Van de Graaff machines, image processing, induction machines, levitation of liquid metals, shaping of interfaces in plastics and glass processing, orientation of ferrofluid seals, cryogenic fluids, liquid crystal displays, thunderstorm electrification, fusion machines, magnetic pumping of liquid metals, magnetohydrodynamic power generation, inductive and dielectric heating, electrophoretic particle motion, electrokinetic and electrocapillary interactions in biological systems, and electron beams. "

Subject:
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Silva, Manuel L.
Zahn, Markus
Date Added:
01/01/2009
The Delft Sand, Clay & Rock Cutting Model
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In dredging, trenching, (deep sea) mining, drilling, tunnel boring and many other applications, sand, clay or rock has to be excavated. This book gives an overview of cutting theories. It starts with a generic model, which is valid for all types of soil (sand, clay and rock) after which the specifics of dry sand, water saturated sand, clay, atmospheric rock and hyperbaric rock are covered. For each soil type small blade angles and large blade angles, resulting in a wedge in front of the blade, are discussed. For each case considered, the equations/model for the cutting forces, power and specific energy are given. The models are verified with laboratory research, mainly at the Delft University of Technology, but also with data from literature.

Subject:
Career and Technical Education
Engineering
Maritime Science
Material Type:
Textbook
Author:
Sape A. Miedema
Date Added:
08/13/2020
Design Principles for Ocean Vehicles (13.42), Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course covers the basic techniques for evaluating the maximum forces and loads over the life of a marine structure or vehicle, so as to be able to design its basic configuration. Loads and motions of small and large structures and their short-term and long-term statistics are studied in detail and many applications are presented in class and studied in homework and laboratory sessions. Issues related to seakeeping of ships are studied in detail. The basic equations and issues of maneuvering are introduced at the end of the course. Three laboratory sessions demonstrate the phenomena studied and provide experience with experimental methods and data processing.

Subject:
Career and Technical Education
Maritime Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Techet, Alexandra
Date Added:
01/01/2005
Dynamics and Control II, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Upon successful completion of this course, students will be able to: * Create lumped parameter models (expressed as ODEs) of simple dynamic systems in the electrical and mechanical energy domains * Make quantitative estimates of model parameters from experimental measurements * Obtain the time-domain response of linear systems to initial conditions and/or common forcing functions (specifically; impulse, step and ramp input) by both analytical and computational methods * Obtain the frequency-domain response of linear systems to sinusoidal inputs * Compensate the transient response of dynamic systems using feedback techniques * Design, implement and test an active control system to achieve a desired performance measureMastery of these topics will be assessed via homework, quizzes/exams, and lab assignments.

Subject:
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Rowell, Derek
Date Added:
01/01/2008
Electrochemical Energy Systems, Spring 2014
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces principles and mathematical models of electrochemical energy conversion and storage. Students study equivalent circuits, thermodynamics, reaction kinetics, transport phenomena, electrostatics, porous media, and phase transformations. In addition, this course includes applications to batteries, fuel cells, supercapacitors, and electrokinetics.

Subject:
Career and Technical Education
Chemistry
Electronic Technology
Engineering
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Bazant, Martin
Date Added:
01/01/2011
Electromagnetics and Applications, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

"This course explores electromagnetic phenomena in modern applications, including wireless and optical communications, circuits, computer interconnects and peripherals, microwave communications and radar, antennas, sensors, micro-electromechanical systems, and power generation and transmission. Fundamentals include quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided waves; resonance; acoustic analogs; and forces, power, and energy."

Subject:
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Staelin, David
Date Added:
01/01/2009
Electronic Power Conversion
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to power electronics. First the principles of power conversion with switching circuits are treated as well as main applications of power electronics. Next the basic circuits of power electronics are explained, including ac-dc converters (diode rectifiers), dc-dc converters (non-isolated and isolated) and dc-ac converters (inverters). Related issues such as pulse width modulation, methods of analysis, voltage distortion and power quality are treated in conjunction with the basic circuits. The main principles of operation of most commonly used power semiconductor switches are explained. Finally, the role of power electronics in sustainable energy future, including renewable energy systems and energy efficiency is discussed.

Study Goals
To get acquainted with applications of power electronics, to obtain insight in the principles of power electronics, to get an overview of power electronic circuits and be able to select appropriate circuits for specific applications and finally to be able to analyse the circuits. The focus in the course is on analysis and to a lesser extent on design.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
J. Popovic
Date Added:
02/09/2016
Fundamentals of Photovoltaics, Fall 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Fundamentals of photoelectric conversion: charge excitation, conduction, separation, and collection. Lectures cover commercial and emerging photovoltaic technologies and cross-cutting themes, including conversion efficiencies, loss mechanisms, characterization, manufacturing, systems, reliability, life-cycle analysis, risk analysis, and technology evolution in the context of markets, policies, society, and environment.

This course is one of many OCW Energy Courses, and it is an elective subject in MIT's undergraduate Energy Studies Minor. This Institute–wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.

Subject:
Career and Technical Education
Engineering
Environmental Engineering
Manufacturing
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Buonassisi, Tonio
Date Added:
01/01/2008
Integrated Microelectronic Devices, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The physics of microelectronic semiconductor devices for silicon integrated circuit applications. Topics: semiconductor fundamentals, p-n junction, metal-oxide semiconductor structure, metal-semiconductor junction, MOS field-effect transistor, and bipolar junction transistor. Emphasis on physical understanding of device operation through energy band diagrams and short-channel MOSFET device design. Issues in modern device scaling outlined. Includes device characterization projects and device design project.

Subject:
Career and Technical Education
Electronic Technology
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Alamo, Jesus Del
Tuller, Harry
Date Added:
01/01/2007
Introduction to Nanoelectronics, Spring 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Traditionally, progress in electronics has been driven by miniaturization. But as electronic devices approach the molecular scale, classical models for device behavior must be abandoned. To prepare for the next generation of electronic devices, this class teaches the theory of current, voltage and resistance from atoms up. To describe electrons at the nanoscale, we will begin with an introduction to the principles of quantum mechanics, including quantization, the wave-particle duality, wavefunctions and Schrĺ_dinger's equation. Then we will consider the electronic properties of molecules, carbon nanotubes and crystals, including energy band formation and the origin of metals, insulators and semiconductors. Electron conduction will be taught beginning with ballistic transport and concluding with a derivation of Ohm's law. We will then compare ballistic to bulk MOSFETs. The class will conclude with a discussion of possible fundamental limits to computation.

Subject:
Career and Technical Education
Electronic Technology
Information Science
Information Technology
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Baldo, Marc
Date Added:
01/01/2010
Laboratory Manual for Semiconductor Devices: Theory and Application
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is the companion laboratory manual to the OER text Semiconductor Devices: Theory and Application. Coverage begins at basic semiconductor devices (signal diodes, LEDs, Zeners, etc.) and proceeds through bipolar and field effect devices. Applications include rectifiers, clippers, clampers, AC to DC power supplies, small and large signal class A amplifiers, followers, class B amplifiers, ohmic region FET applications, etc.
Mirror site: http://www.dissidents.com/resources/LaboratoryManualForSemiconductorDevices.pdf

Subject:
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Textbook
Provider:
Mohawk Valley Community College
Author:
James Fiore
Date Added:
02/01/2017
Modeling and Simulation of Dynamic Systems, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Mathematical modeling of complex engineering systems at a level of detail compatible with the design and implementation of modern control systems. Wave-like and diffusive energy transmission systems. Multiport energy storing fields and dissipative fields; consequences of symmetry and asymmetry. Nonlinear mechanics and canonical transformation theory. Examples will include mechanisms, electromechanical transducers, electronic systems, fluid systems, thermal systems, compressible flow processes, chemical processes. This course models multi-domain engineering systems at a level of detail suitable for design and control system implementation. Topics include network representation, state-space models; multi-port energy storage and dissipation, Legendre transforms; nonlinear mechanics, transformation theory, Lagrangian and Hamiltonian forms; and control-relevant properties. Application examples may include electro-mechanical transducers, mechanisms, electronics, fluid and thermal systems, compressible flow, chemical processes, diffusion, and wave transmission.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Hogan, Neville
Date Added:
01/01/2006
Photovoltaic Solar Energy Systems, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class will study the behavior of photovoltaic solar energy systems, focusing on the behavior of "stand-alone" systems. The design of stand-alone photovoltaic systems will be covered. This will include estimation of costs and benefits, taking into account any available government subsidies. Introduction to the hardware elements and their behavior will be included.

Subject:
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Bucciarelli, Louis
Date Added:
01/01/2004
Power Electronics, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The application of electronics to energy conversion and control; phase-controlled rectifier/inverter circuits, dc/dc converters, high-frequency inverters, and motion control systems. Characteristics of power semiconductor devices: diodes, bipolar and field effect transistors, IGBTS, and thyristors. Modeling, analysis, and control techniques. Magnetic circuits. Numerous application examples.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Perreault, David
Date Added:
01/01/2007
Radiative Transfer, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Principles of thermal radiation and their application to engineering heat and photon transfer problems. Quantum and classical models of radiative properties of materials, electromagnetic wave theory for thermal radiation, radiative transfer in absorbing, emitting, and scattering media, and coherent laser radiation. Applications cover laser-material interactions, imaging, infrared instrumentation, global warming, semiconductor manufacturing, combustion, furnaces, and high temperature processing.

Subject:
Career and Technical Education
Manufacturing
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Chen, Gang
Date Added:
01/01/2006
Semiconductor Devices: Theory and Application
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This text covers the theory and application of discrete semiconductor devices including diodes, bipolar junction transistors, JFETs, MOSEFETs and IGBTs. It is appropriate for Associate and Bachelors degrees programs in Electrical and Electronic Engineering Technology, Electrical Engineering and similar areas of study. Applications include rectifying, clipping, clamping, switching, small signal amplifiers and followers, and class A, B and D power amplifiers. A companion laboratory manual is available. The text is also available in Open Document Text (.odt) format.

Subject:
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Textbook
Provider:
Dissidents
Author:
James M. Fiore
Date Added:
05/01/2017