This a textbook on special relativity, aimed at undergraduates who have already …
This a textbook on special relativity, aimed at undergraduates who have already completed a freshman survey course. The treatment of electromagnetism assumes previous exposure to Maxwell's equations in integral form, but no knowledge of vector calculus.
Body Physics was designed to meet the objectives of a one-term high …
Body Physics was designed to meet the objectives of a one-term high school or freshman level course in physical science, typically designed to provide non-science majors and undeclared students with exposure to the most basic principles in physics while fulfilling a science-with-lab core requirement. The content level is aimed at students taking their first college science course, whether or not they are planning to major in science. However, with minor supplementation by other resources, such as OpenStax College Physics, this textbook could easily be used as the primary resource in 200-level introductory courses. Chapters that may be more appropriate for physics courses than for general science courses are noted with an asterisk symbol (*). Of course, this textbook could be used to supplement other primary resources in any physics course covering mechanics and thermodynamics.
The need for an OER textbook on conceptual physics led to the …
The need for an OER textbook on conceptual physics led to the discovery of a short book Matthew Raspanti posted on the internet back in 2008. He agreed to a CC-BY-NC-SA licence that permits the text to reside on Wikiversity as a pdf file. It is available as a single 162 page document, as well as 20 much shorter documents to facilitate online navigation.
Each of these 20 sections links out of a WIKI page that will permit the submission and sharing of ancillary materials under a CC-BY-SA license. These wiki-pages can be organized to host an arbitrary number of submissions by students, as well as by instructors.
The course provides the technological background of treatment processes applied for production …
The course provides the technological background of treatment processes applied for production of drinking water. Treatment processes are demonstrated with laboratory experiments.
Organization of synaptic connectivity as the basis of neural computation and learning. …
Organization of synaptic connectivity as the basis of neural computation and learning. Single and multilayer perceptrons. Dynamical theories of recurrent networks: amplifiers, attractors, and hybrid computation. Backpropagation and Hebbian learning. Models of perception, motor control, memory, and neural development. Alternate years.
This course covers the fundamentals of signal and system analysis, focusing on …
This course covers the fundamentals of signal and system analysis, focusing on representations of discrete-time and continuous-time signals (singularity functions, complex exponentials and geometrics, Fourier representations, Laplace and Z transforms, sampling) and representations of linear, time-invariant systems (difference and differential equations, block diagrams, system functions, poles and zeros, convolution, impulse and step responses, frequency responses). Applications are drawn broadly from engineering and physics, including feedback and control, communications, and signal processing.
" This class explores the creation (and creativity) of the modern scientific …
" This class explores the creation (and creativity) of the modern scientific and cultural world through study of western Europe in the 17th century, the age of Descartes and Newton, Shakespeare, Milton and Ford. It compares period thinking to present-day debates about the scientific method, art, religion, and society. This team-taught, interdisciplinary subject draws on a wide range of literary, dramatic, historical, and scientific texts and images, and involves theatrical experimentation as well as reading, writing, researching and conversing. The primary theme of the class is to explore how England in the mid-seventeenth century became "a world turned upside down" by the new ideas and upheavals in religion, politics, and philosophy, ideas that would shape our modern world. Paying special attention to the "theatricality" of the new models and perspectives afforded by scientific experimentation, the class will read plays by Shakespeare, Tate, Brecht, Ford, Churchill, and Kushner, as well as primary and secondary texts from a wide range of disciplines. Students will also compose and perform in scenes based on that material."
This course explores the theory of self-assembly in surfactant-water (micellar) and surfactant-water-oil …
This course explores the theory of self-assembly in surfactant-water (micellar) and surfactant-water-oil (micro-emulsion) systems. It also introduces the theory of polymer solutions, as well as scattering techniques, light, x-ray, and neutron scattering applied to studies of the structure and dynamics of complex liquids, and modern theory of the liquid state relevant to structured (supramolecular) liquids.
Thermal backgrounds in space. Cosmological principle and its consequences: Newtonian cosmology and …
Thermal backgrounds in space. Cosmological principle and its consequences: Newtonian cosmology and types of "universes"; survey of relativistic cosmology; horizons. Overview of evolution in cosmology; radiation and element synthesis; physical models of the "early stages." Formation of large-scale structure to variability of physical laws. First and last states. Some knowledge of relativity expected. 8.962 recommended though not required. This course provides an overview of astrophysical cosmology with emphasis on the Cosmic Microwave Background (CMB) radiation, galaxies and related phenomena at high redshift, and cosmic structure formation. Additional topics include cosmic inflation, nucleosynthesis and baryosynthesis, quasar (QSO) absorption lines, and gamma-ray bursts. Some background in general relativity is assumed.
Concepts and physical pictures behind phenomena that appear in interacting many-body systems. …
Concepts and physical pictures behind phenomena that appear in interacting many-body systems. Concentrates on path integrals, meanfield theories and a semiclassical picture of fluctuations around the meanfield state. Some correlation function and finite temperature techniques also covered.
The strong force which bind quarks together is described by a relativistic …
The strong force which bind quarks together is described by a relativistic quantum field theory called quantum chromodynamics (QCD). Subject surveys: The QCD Langrangian, asymptotic freedom and deep inelastic scattering, jets, the QCD vacuum, instantons and the U(1) problem, lattice guage theory, and other phases of QCD.
Survey of basic electromagnetic phenomena: electrostatics, magnetostatics; electromagnetic properties of matter. Time-dependent …
Survey of basic electromagnetic phenomena: electrostatics, magnetostatics; electromagnetic properties of matter. Time-dependent electromagnetic fields and Maxwell's equations. Electromagnetic waves, emission, absorption, and scattering of radiation. Relativistic electrodynamics and mechanics.
How do greenhouse gases affect the climate? Explore the atmosphere during the …
How do greenhouse gases affect the climate? Explore the atmosphere during the ice age and today. What happens when you add clouds? Change the greenhouse gas concentration and see how the temperature changes. Then compare to the effect of glass panes. Zoom in and see how light interacts with molecules. Do all atmospheric gases contribute to the greenhouse effect?
How did scientists figure out the structure of atoms without looking at …
How did scientists figure out the structure of atoms without looking at them? Try out different models by shooting light at the atom. Check how the prediction of the model matches the experimental results.
Experiment with conductivity in metals, plastics and photoconductors. See why metals conduct …
Experiment with conductivity in metals, plastics and photoconductors. See why metals conduct and plastics don't, and why some materials conduct only when you shine a flashlight on them.
Learn about position, velocity, and acceleration in the "Arena of Pain". Use …
Learn about position, velocity, and acceleration in the "Arena of Pain". Use the green arrow to move the ball. Add more walls to the arena to make the game more difficult. Try to make a goal as fast as you can.
Learn about position, velocity and acceleration vectors. Move the ladybug by setting …
Learn about position, velocity and acceleration vectors. Move the ladybug by setting the position, velocity or acceleration, and see how the vectors change. Choose linear, circular or elliptical motion, and record and playback the motion to analyze the behavior.
Learn how friction causes a material to heat up and melt. Rub …
Learn how friction causes a material to heat up and melt. Rub two objects together and they heat up. When one reaches the melting temperature, particles break free as the material melts away.
Make sparks fly with John Travoltage. Wiggle Johnnie's foot and he picks …
Make sparks fly with John Travoltage. Wiggle Johnnie's foot and he picks up charges from the carpet. Bring his hand close to the door knob and get rid of the excess charge.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.