The course addresses dynamic systems, i.e., systems that evolve with time. Typically …
The course addresses dynamic systems, i.e., systems that evolve with time. Typically these systems have inputs and outputs; it is of interest to understand how the input affects the output (or, vice-versa, what inputs should be given to generate a desired output). In particular, we will concentrate on systems that can be modeled by Ordinary Differential Equations (ODEs), and that satisfy certain linearity and time-invariance conditions. We will analyze the response of these systems to inputs and initial conditions. It is of particular interest to analyze systems obtained as interconnections (e.g., feedback) of two or more other systems. We will learn how to design (control) systems that ensure desirable properties (e.g., stability, performance) of the interconnection with a given dynamic system.
Engagement in online courses is key for student success, teacher evaluation and …
Engagement in online courses is key for student success, teacher evaluation and the overall course experience. A great way to promote student engagement in your online course is to work on feedback. Students that receive regular feedback tend to perform better and as a result have good opinions of their time in the course.
Introduction to reactor dynamics including subcritical multiplication, critical operation in absence of …
Introduction to reactor dynamics including subcritical multiplication, critical operation in absence of thermal feedback effects and effects of Xenon, fuel and moderator temperature, etc. Derivation of point kinetics and dynamic period equations. Techniques for reactor control including signal validation, supervisory algorithms, model-based trajectory tracking, and rule-based control. Overview of light-water reactor startup. Lectures and demonstrations with computer simulation and the use of the MIT Research Reactor.
This guide includes tips and best practices designed to help you: Write valuable …
This guide includes tips and best practices designed to help you: Write valuable grading comments on student assignmentsUse varied methods to give general feedback to the whole classFacilitate effective online discussions
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.