Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
By the end of this section, you will be able to:Define matter …
By the end of this section, you will be able to:Define matter and elementsDescribe the interrelationship between protons, neutrons, and electronsCompare the ways in which electrons can be donated or shared between atomsExplain the ways in which naturally occurring elements combine to create molecules, cells, tissues, organ systems, and organisms
Course Contents 1. Turning performance (three dimensional equations of motion, coordinate systems, Euler angles, transformation matrices) 2. Airfield performance (take-off and landing) 3. Unsteady climb and descent (including minimum time to climb problem) 4. Cruise flight and transport performance 5. Equations of motion with a wind gradient present 6. Equations of motion applied to various phases of space flight 7. Launch, Vertical flight, delta-V budget, burn out height, staging 8. Gravity perturbations to satellite orbits, J2 effect for low earth orbit satellites, J2,2 effect for Geostationary Earth Orbit sattelites leading to contribution in ï„V budget 9. Patched conics approach for interplanetary flight, gravity assist effect / options for change of excess velocity (2d, 3d), Launch, in orbit insertion. Study Goals 1. Integrate fundamental disciplines (aero, power and propulsion, mechanics..) to describe the kinematics of aerospace vehicles satisfying real world constraints 2. Derive equations of motion for elementary flight and mission phases (climb, turn, cruise, take-off, launch, orbit) 3. Derive analytical expressions for optimal performance (steepest turn, Breguet Range, patched conics, J2, maneuvers ) 4. Determine pros/cons of multi-stage launchers. 5. Assess sun lighting conditions on a satellite. 6. Determine the influence of wind (gradient) on aircraft motion and performance. 7. Develop the theory to describe an interplanetary trajectory as a succession of two-body problems, and apply this concept to real missions.
Chemical rocket propulsion systems for launch, orbital, and interplanetary flight. Modeling of …
Chemical rocket propulsion systems for launch, orbital, and interplanetary flight. Modeling of solid, liquid-bipropellant, and hybrid rocket engines. Thermochemistry, prediction of specific impulse. Nozzle flows including real gas and kinetic effects. Structural constraints. Propellant feed systems, turbopumps. Combustion processes in solid, liquid, and hybrid rockets. Cooling; heat sink, ablative, and regenerative.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.