Anatomy and Physiology is a dynamic textbook for the two-semester human anatomy and …
Anatomy and Physiology is a dynamic textbook for the two-semester human anatomy and physiology course for life science and allied health majors. The book is organized by body system and covers standard scope and sequence requirements. Its lucid text, strategically constructed art, career features, and links to external learning tools address the critical teaching and learning challenges in the course. The web-based version of Anatomy and Physiology also features links to surgical videos, histology, and interactive diagrams.
This 16-minute video lesson looks at how one neuron can stimulate (or …
This 16-minute video lesson looks at how one neuron can stimulate (or inhibit) another neuron at a chemical synapse. [Biology playlist: Lesson 46 of 71].
This 15-minute video lesson looks at the role of the sarcoplasmic reticulum …
This 15-minute video lesson looks at the role of the sarcoplasmic reticulum in controlling calcium ion concentrations within the muscle cell. [Biology playlist: Lesson 49 of 71].
Survey of principles underlying the structure and function of the nervous system, …
Survey of principles underlying the structure and function of the nervous system, integrating molecular, cellular, and systems approaches. Topics: development of the nervous system and its connections, cell biology or neurons, neurotransmitters and synaptic transmission, sensory systems of the brain, the neuroendocrine system, the motor system, higher cortical functions, behavioral and cellular analyses of learning and memory. First half of an intensive two-term survey of brain and behavioral studies for first-year graduate students. Open to graduate students in other departments, with permission of instructor.
This course serves as an introduction to the structure and function of …
This course serves as an introduction to the structure and function of the nervous system. Emphasis is placed on the cellular properties of neurons and other excitable cells. Topics covered include the structure and biophysical properties of excitable cells, synaptic transmission, neurochemistry, neurodevelopment, and the integration of information in simple systems and the visual system.
This course is designed to provide an understanding of how the human …
This course is designed to provide an understanding of how the human brain works in health and disease, and is intended for both the Brain and Cognitive Science major and the non-Brain and Cognitive Science major. Knowledge of how the human brain works is important for all citizens, and the lessons to be learned have enormous implications for public policy makers and educators. The course will cover the regional anatomy of the brain and provide an introduction to the cellular function of neurons, synapses and neurotransmitters. Commonly used drugs that alter brain function can be understood through a knowledge of neurotransmitters. Along similar lines, common diseases that illustrate normal brain function will be discussed. Experimental animal studies that reveal how the brain works will be reviewed. Throughout the seminar we will discuss clinical cases from Dr. Byrne's experience that illustrate brain function; in addition, articles from the scientific literature will be discussed at each class.
Considers molecular control of neural specification, formation of neuronal connections, construction of …
Considers molecular control of neural specification, formation of neuronal connections, construction of neural systems, and the contributions of experience to shaping brain structure and function. Topics include: neural induction and pattern formation, cell lineage and fate determination, neuronal migration, axon guidance, synapse formation and stabilization, activity-dependent development and critical periods, development of behavior.
Designed for students without previous experience in techniques of cellular and molecular …
Designed for students without previous experience in techniques of cellular and molecular biology, this class teaches basic experimental techniques in cellular and molecular neurobiology. Experimental approaches covered include tissue culture of neuronal cell lines, dissection and culture of brain cells, DNA manipulation, synaptic protein analysis, immunocytochemistry, and fluorescent microscopy.
Stimulate a neuron and monitor what happens. Pause, rewind, and move forward …
Stimulate a neuron and monitor what happens. Pause, rewind, and move forward in time in order to observe the ions as they move across the neuron membrane.
This series of research talks by members of the Department of Brain …
This series of research talks by members of the Department of Brain and Cognitive Sciences introduces students to different approaches to the study of the brain and mind. Topics include: "From Neurons to Neural Networks" "Prefrontal Cortex and the Neural Basis of Cognitive Control" "Hippocampal Memory Formation and the Role of Sleep" "The Formation of Internal Modes for Learning Motor Skills" "Look and See: How the Brain Selects Objects and Directs the Eyes" "How the Brain Wires Itself"
How does the physical brain create the mind? This session explores how …
How does the physical brain create the mind? This session explores how the brain's structure relates to specific mental functions. The cases of some famous patients, such as Phineas Gage and Patient H.M., demonstrate key points about the brain basis of personality and memory.
In my 2-Minute Neuroscience videos I explain neuroscience topics in 2 minutes …
In my 2-Minute Neuroscience videos I explain neuroscience topics in 2 minutes or less. In this video, I discuss synaptic transmission. I describe the synapse, synaptic cleft, release of neurotransmitter and its interaction with receptors, and the ways neurotransmitter is cleared from the synaptic cleft. Duration: 1:51.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.