Updating search results...

Search Resources

600 Results

View
Selected filters:
  • Engineering
Applied Nuclear Physics, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Fundamentals of nuclear physics for engineering students. Basic properties of the nucleus and nuclear radiations. Elementary quantum mechanical calculations of bound-state energies and barrier transmission probability. Binding energy and nuclear stability. Interactions of charged particles, neutrons, and gamma rays with matter. Radioactive decays. Energetics and general cross-section behavior in nuclear reactions.

Subject:
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Yip, Sidney
Date Added:
01/01/2006
Aquatic Chemistry, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course details the quantitative treatment of chemical processes in aquatic systems such as lakes, oceans, rivers, estuaries, groundwaters, and wastewaters. It includes a brief review of chemical thermodynamics that is followed by discussion of acid-base, precipitation-dissolution, coordination, and reduction-oxidation reactions. Emphasis is on equilibrium calculations as a tool for understanding the variables that govern the chemical composition of aquatic systems and the fate of inorganic pollutants.

Subject:
Chemistry
Engineering
Environmental Engineering
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Moffett, Jim
Seewald, Jeff
Tivey, Meg
Date Added:
01/01/2005
The Art of Approximation in Science and Engineering, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course teaches simple reasoning techniques for complex phenomena: divide and conquer, dimensional analysis, extreme cases, continuity, scaling, successive approximation, balancing, cheap calculus, and symmetry. Applications are drawn from the physical and biological sciences, mathematics, and engineering. Examples include bird and machine flight, neuron biophysics, weather, prime numbers, and animal locomotion. Emphasis is on low-cost experiments to test ideas and on fostering curiosity about phenomena in the world.

Subject:
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Sanjoy Mahajan
Date Added:
01/01/2008
Atomistic Computer Modeling of Materials (SMA 5107), Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course uses the theory and application of atomistic computer simulations to model, understand, and predict the properties of real materials. Specific topics include: energy models from classical potentials to first-principles approaches; density functional theory and the total-energy pseudopotential method; errors and accuracy of quantitative predictions: thermodynamic ensembles, Monte Carlo sampling and molecular dynamics simulations; free energy and phase transitions; fluctuations and transport properties; and coarse-graining approaches and mesoscale models. The course employs case studies from industrial applications of advanced materials to nanotechnology. Several laboratories will give students direct experience with simulations of classical force fields, electronic-structure approaches, molecular dynamics, and Monte Carlo.

Subject:
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Ceder, Gerbrand
Marzari, Nicola
Date Added:
01/01/2005
Autodesk Inventor
Restricted Use
Copyright Restricted
Rating
0.0 stars

This eBook contains self-paced learning modules that were written as a tool to guide and teach you to master Inventor. No two students learn at the same pace, therefore, the modules were written as competency-based bite-size pieces to allow you to work at your own pace. They can be used in correspondence courses, online courses, instructor-lead classes or by individuals teaching themselves to use Inventor in their own home or office.

Subject:
Engineering
Material Type:
Textbook
Provider:
British Columbia/Yukon Open Authoring Platform
Author:
Wally Baumback
Date Added:
07/22/2021
BIM Planning for Facility Owners
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This Guide has been developed for facility owner organizations, along with designers, contractors, operators, and consultants who advise owners. We assume that the reader has a fundamental understanding of BIM concepts. For those readers who are not familiar with BIM, it is recommended, that you review BIM literature such as BIG BIM little bim by Jernigan (2008), the BIM Handbook by Eastman et al. (2011), or other BIM resources from the GSA, US Department of Veterans Affairs, US Army Corp of Engineers, and others. This Guide is not intended to convince an organization to use BIM, but rather how to implement it. If the organization has determined that BIM can add value to the organization, this Guide will lead them through the steps to integrate BIM into the organization. However, if the organization is unsure about implementing BIM, it may be necessary to further research the benefits and risks of BIM to make a business case for implementing BIM.

Subject:
Engineering
Material Type:
Textbook
Provider:
Penn State University
Author:
Ashwin Ramesh
Chimay Anumba
Dan Weiger
Eric Nulton
John Messner
Kim Price
Ralph Kreider
Robert Leicht
Date Added:
12/01/2020
BIM Project Execution Planning Guide, Version 3.0
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This BIM Project Execution Planning Guide is a product of the BIM Project Execution Planning Project within the buildingSMART alliance™ (bSa), a council within the National Institute of Building Sciences. The bSa is charged with developing the National Building Information Modeling Standard – United States™ (NBIMS-US). This Guide was developed to provide a practical manual that can be used by project teams to design their BIM strategy and develop a BEP. The core modeling and information exchange concepts have been designed to complement the long-term goals of the bSa in the development of a standard that can be implemented throughout the AECOO Industry to improve the efficiency and effectiveness of BIM implementation on projects.

Subject:
Engineering
Material Type:
Textbook
Provider:
Penn State University
Author:
Chimay Anumba
Chitwan Saluja
Colleen Kasprzak
Craig Dubler
John Messner
Nevena Zikic
Ralph Kreider
Robert Leicht
Sagata Bhawani
Sean Goodman
Date Added:
04/21/2021
Basic Electricity
Unrestricted Use
CC BY
Rating
0.0 stars

To safely work with electricity, it is important to have a grasp of the basic theories. Whether we are talking about atomic structure, electrical terms, or measurement devices, understanding the theory of electricity is a key concept. This textbook, divided into three sections, provides easy-to-understand and enjoyable lessons on atomic structure, electrical units, and measurement devices for those training and working as electricians.

Subject:
Engineering
Material Type:
Textbook
Provider:
British Columbia/Yukon Open Authoring Platform
Author:
Chad Flinn
Date Added:
06/01/2020
Basic Engineering Science - A Systems, Accounting, and Modeling Approach
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This textbook is based on a different paradigm for organizing an engineering science core --- a systems, accounting and modeling approach --- that emphasizes the common, underlying concepts of engineering science. Although this approach is not new, as most graduate students have been struck by this idea sometime during their graduate education, its use as the organizing principle for an undergraduate curriculum is new. By focusing on the underlying concepts and stressing the similarities between subjects that are often perceived by students (and taught by faculty) as unconnected topics, this approach provides engineering students a foundational framework for recognizing and building connections as they travel through their education.

Subject:
Engineering
Material Type:
Textbook
Provider:
Rose-Hulman Institute of Technology
Author:
Donald E. Richards
Date Added:
02/14/2022
Basics of Fluid Mechanics
Read the Fine Print
Educational Use
Rating
0.0 stars

The topic of fluid mechanics is common to several disciplines: mechanical engineering, aerospace engineering, chemical engineering, and civil engineering. In fact, it is also related to disciplines like industrial engineering, and electrical engineering. While the emphasis is somewhat different in this book, the common material is presented and hopefully can be used by all. One can only admire the wonderful advances done by the previous geniuses who work in this field. In this book it is hoped to insert, what and when a certain model is suitable than other models.

Subject:
Engineering
Material Type:
Textbook
Author:
Genick Bar-Meir
Date Added:
02/14/2022
The Basics of Transport Phenomena
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Have you ever wondered why ventilation helps to cool down your hot chocolate? Do you know why a surfing suit keeps you warm? Why iron feels cold, while wood feels warm at room temperature? Or how air is transferred into aqueous liquids in a water treatment plant? How can we sterilize milk with the least amount of energy? Or how do we design a new cooling tower of a power plant?

Transport Phenomena addresses questions like these and many more, exploring a wide variety of applications ranging from industrial processes to daily life problems and even to bioprocesses in our own body.

In Transport Phenomena, the transport and transfer of momentum, heat and mass are studied. To understand these processes which often take place simultaneously, the underlying concepts will be covered in this course.

Subject:
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Peter Hamersma
Rob Mudde
Date Added:
08/13/2020
Bed, Bank and Shoreline Protection
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Design of shoreline protection along rivers, canals and the sea; load on bed and shoreline by currents, wind waves and ship motion; stability of elements under current and wave conditions; stability of shore protection elements; design methods, construction methods. Flow: recapitulation of basics from fluid mechanics (flow, turbulence), stability of individual grains (sand, but also rock) in different type of flow conditions (weirs, jets), scour and erosion. Porous Media: basic equation, pressures and velocities on the stability on the boundary layer; groundwater flow with impermeable and semi-impermeable structures; granular filters and geotextiles. Waves: recapitulation of the basics of waves, focus on wave forces on the land-water boundary, specific aspects of ship induced waves, stability of elements under wave action (loose rock, placed blocks, impermeable layers) Design: overview of the various types of protections, construction and maintenance; design requirements, deterministic and probabilistic design; case studies, examples Materials and environment: overview of materials to be used, interaction with the aquatic environment, role of the land-water boundary as part of the ecosystem; environmentally sound shoreline design.

Subject:
Engineering
Material Type:
Full Course
Lecture
Reading
Textbook
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Ir. H.J. Verhagen
Date Added:
02/22/2016
Beyond Engineering: Building with Nature
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

If you’re a coastal engineer, ecologist or planner, then this is the course for you. You already know that engineering and ecological principles are not enough to realize nature-friendly solutions in practice. You need people on your side!

In this course you will learn how to build a relevant coalition of stakeholders to support the design and implementation of ecosystem-based hydraulic infrastructures. After learning basic stakeholder mapping and game theory techniques, you will apply Social Design Principles to a Building with Nature ecosystem-based design case. This will equip you to identify promising collaborative arrangements for your engineering or planning practice.

The course builds on the previous Building with Nature MOOC, which explored the use of natural materials and ecological processes in achieving effective and sustainable hydraulic infrastructure designs, distilling Engineering and Ecological Design Principles. In this course, the missing element of Social Design Principles are developed and taught.

You’ll learn from renowned Dutch engineers and international environmental scientists, who work at the technical- governance interface. Iconic examples such as the Maasvlakte II expansion to Rotterdam Harbor and the Delfland Sand Engine Mega-nourishment serve as study material. The challenges in designing and implementing these nature-friendly hydraulic infrastructures are explored by the eminent professors who were responsible for their genesis.

Join us in becoming one of the new generation of engineers, ecologists and planners who see the Building with Nature integrated design approach as critical to hydraulic engineering, nature and society.

Subject:
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
J. Slinger
Date Added:
08/13/2020
Big Data Strategies to Transform Your Business
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

While big data infiltrates all walks of life, most firms have not changed sufficiently to meet the challenges that come with it. In this course, you will learn how to develop a big data strategy, transform your business model and your organization.

This course will enable professionals to take their organization and their own career to the next level, regardless of their background and position.

Professionals will learn how to be in charge of big data instead of being subject to it. In particular, they will become familiar with tools to:

assess their current situation regarding potential big data-induced changes of a disruptive nature,
identify their options for successfully integrating big data in their strategy, business model and organization, or if not possible, how to exit quickly with as little loss as possible, and
strengthen their own position and that of their organization in our digitalized knowledge economy
The course will build on the concepts of product life cycles, the business model canvas, organizational theory and digitalized management jobs (such as Chief Digital Officer or Chief Informatics Officer) to help you find the best way to deal with and benefit from big data induced changes.

Subject:
Business
Computer Science
Engineering
Information Technology
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Claudia Wakker
Dr. Scott Cunningham
Marijn Janssen
Date Added:
08/13/2020